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Summary

A numerical method for the convective heat transfer

problem is developed for low speed flow at mild

temperatures. A simplified energy equation is added to

the incompressible Navier-Stokes formulation by using

Boussinesq approximation to account for the buoyancy

force. A pseudocompressibility method is used to solve

the resulting set of equations for steady-state solutions in

conjunction with an approximate factorization scheme.

A Neumann-type pressure boundary condition is devised
to account for the interaction between pressure and

temperature terms, especially near a heated or cooled

solid boundary. It is shown that the present method is

capable of predicting the temperature field in an

incompressible flow.

Introduction

Heat transfer in viscous incompressible flow is of interest

in many industrial applications. For example, in a liquid

rocket engine, the liquid fuel and oxidizer are used as
coolant in various components such as the bearing in

the oxidizer and fuel turbopump. Also, the flow in an

autoclave for curing aerospace parts can be analyzed

using an incompressible flow assumption. For a complete

analysis of heat transfer in a wide range of temperature,
one must include radiation effects as well as boiling heat

transfer. However, of current interest are the problems

dominated by convective heat transfer. Therefore, in the

present study, the internal energy generated by viscous

dissipation and the thermal radiation effects are neglected.
The fluid is assumed to be incompressible with constant

physical properties except for the buoyancy effect due to
density variations. When the temperature of the flow field

is not high, the thermally driven velocity is small relative

to sonic speed. Thus a Boussinesq approximation can be

applied to the incompressible Navier-Stokes equations

to represent the temperature field. The purpose of the

present study is to develop a computational capability for

simulating viscous incompressible flows with temperature
variations. Since the method is intended for application
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to three-dimensional problems, a primitive variable
formulation is chosen based on a structured-grid

approach. To use one of the primitive variable solvers

(refs. 1-5), a simplified energy equation is added to the

incompressible Navier-Stokes equations. In the present

study, the first incompressible Navier-Stokes solver

developed at Ames Research Center, the INS3D code
(ref. 1), is selected to test the feasibility of using the

present formulation in predicting the temperature field

in an incompressible medium.

To validate the flow solver, a simple channel flow is

computed where an analytical solution exists. Then, two-

dimensional flow problems are computed and compared

with other numerical and experimental results. In all

these problems, natural, mixed, and forced convection

problems are examined. Finally, computed results in

three dimensions are compared with experiments. The

simulation capability related to thermal effects has been
demonstrated.

Solution Methods

Boussinesq Approximation

Neglecting the adiabatic temperature increase due
to friction, the equations governing the flow of an

incompressible fluid with constant properties can be
written as

_u----Li= 0 (1)
3xi

_u i t. 0uiuj 3p +0"cij +_P-P0 (2)

_t Oxj 3x i Oxj P0

OT 3ujT _2T
+ -- = a _ (3)

3t bxj _xjbxj

where xi is the Cartesian coordinates, ui the correspond-

ing velocity components, p the pressure, t the time, "qj
the viscous-stress tensor, _ the vector of gravitational

acceleration, p the density, T the temperature, and c¢ the

thermal diffusivity. The viscous stress tensor can be
written as



"¢ij=2vSij- Rij (4)

=1I au__ i+ au__2jsij (5)
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where v is the kinematic viscosity, Sij the strain-rate

tensor, and Rij the Reynolds stresses. Various levels of

closure models for Rij are possible. In the present study,
turbulence is simulated by an eddy viscosity model using

a constitutive equation of the following form:

= + RkkSij - 2vtSij (6)Rij

where v t is the turbulent eddy viscosity. By including the

normal stress, Rkk, in the pressure, v in equation (4) can

be replaced by (v + vt) as follows:

"qj = 2(v + v t)Sij = 2vtSij (7)

In the remainder of this report, the total viscosity, vT, will

be represented simply by v. The present formulations

allow for a spatially varying viscosity.

The buoyancy force term is simplified through the

Boussinesq approximation where the density in the

buoyancy term is represented by a linear variation of the

temperature,

p = P0{l- _(T-T0)} (8)

where _ is the coefficient of thermal expansion. The

buoyancy term based on this approximation is included in

the momentum equation (2) resulting in

3ui+ 3uiuj-- _-_P + 0_iJ -_,_(T-T0) (2')
3t 3xj ox i oxj

The above governing equations can be nondimensional-

ized by introducing the following dimensionless

quantities:

x'= x- T'= T-T0
L' TI-T 0

for natural convection,

t' = __t u' = __u p, = p
L2/o_ ' L2/t_ ' p0(a/L) 2

for forced/mixed convection,

t" = t u' = u p, p
L/u 0 L/u 0 ' P0U2

Here, u0 is the reference velocity, L the reference length,

and T1 - TO the reference temperature difference. By

omitting the prime in the nondimensional variables, the

governing equations with Boussinesq approximation can

be written as the following dimensionless form:

0ui = 0 (9)
3xi

0uiuj 3p 3_ij
0ui + - + C M
3t 0xj 0x i _- _gCBT (10)

3T 3ujT _ 02T

+ _ = GE Oxj_xj
(11)

Where, _g is the unit vector for _avitational accelera-
tion. Depending on the flow regime, the reference

quantities vary and the coefficients are defined

accordingly:

for natural convection,

1 Gr 1

CM='Ree' CB--- CE =-- Re 2 ' RePr
(12a)

for forced/mixed convection,

C M=Pr, C B=RaPr, C E=I (12b)

Here, the nondimensional numbers are defined as

Reynolds number: Re = uOL
v

v
Prandtl number: Pr = --

Grashof number: Gr= g_L3 (T1 - TO) (13)
v2

Rayleigh number: Ra = g_L3 (T1 - TO )
vfX

Richardson number:
Gr

Ri_--

Re 2

Pseudoeompressibility Formulation in Generalized
Coordinates

The pseudocompressibility is introduced after the

governing equations (9)-(11) are transformed into general
curvilinear coordinates, (_,rl,_), which results in

_off a ^
3t =-_i ( i-Evi)+S (14)
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J = Jacobian of the transformation

13= pseudocompressibility parameter

Here, %1, %2, and %3 are components of the unit tensor gg
in the x, y, and z directions, respectively.

where
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I2I= Jacobian matrix of the source term

F1Dn+I = V_. V_i I m

(F2 and F 3 are similarly defined)

8{ = finite difference form of 0--_"

o_= 1/2 for trapezoidal, or 1 for Euler

I m = diag[0,1,1,1]

This equation is iterated in pseudotime until the solution

converges to steady state, at which time the original

incompressible Navier-Stokes equations are satisfied.
A direct inversion of equation (15) would become a

Newton iteration for a steady-state solution. In three

dimensions, however, direct inversion of a large block
banded matrix of the unfactored scheme would be

impractical. Numerous iterative schemes can be imple-

mented to solve these equations (see ref. 6 for a review).

In the present study, an approximate factorization scheme

by Beam and Warming (ref. 7) is used.

Numerical Method

An unfactored implicit scheme can be obtained by

linearizing the flux vectors with respect to the previous

time step and dropping terms of the second and higher
order, which results in the following equations in delta
form:

[I + lY_q:J(8_i (/kn - Fi) - I2I)](D n+l -Dn )

(15)

Buoyancy Effect on Pressure

The buoyancy effect in a thermally convective flow needs
to be assessed relative to the pressure wave propagation

and the boundary layer development. For the pseudo-

compressibility formulation, the pressure wave propa-

gates at a finite speed, the magnitude of which depends

on the pseudocompressibility parameter. When the
thermal effect is the dominant driving force such as in

natural convection, a pressure gradient is created by the

temperature variations. Thus the pressure boundary
condition should include temperature effect. A full

account of buoyancy effect on pseudocompressibility

will be given in a later report.



Computed Results

A Vertical Channel with Temperature Gradient

A two-dimensional vertical channel flow is considered as

a first test case of the present formulation. As shown in

figure 1(a), one wall of the channel is heated to Tw and

the other is cooled down to -Tw. For an infinitely long

channel, an analytic solution exists in the following form:

x'_+g[3h2 T x(1 x_( 1 x_
v=6V0h(1-_) _ w_\_-_'j\ -;j

T=Tw(l-2h)

where v is the vertical velocity, h the channel width, and

V 0 an average velocity.

The computation was performed using a long channel

with L = 100h. At the inlet, a uniform temperature T = 0

and a constant velocity v =V 0 are specified, while at the

outlet a Neumann condition is imposed. In a forced
convection mode, the flow becomes a two-dimensional

Poiseuille flow. In the case of natural convection, which

has the zero streamwise pressure gradient, the flow is

generated by the buoyancy force, whereas in mixed

convection the flow develops not only by the buoyancy

force but also by the streamwise pressure gradient. All

three modes of heat transfer problems are computed by

selecting nondimensional parameters to represent

respective flow fields. In figures l(b)-I (d), computed
temperature, vorticity, and velocity profiles at y/h = 50

are compared with the analytic solutions. Computations

essentially reproduced the analytic solutions.

Flow around a Heated Circular Cylinder

The external flow test case consisted of a circular cylinder

under the influence of a uniform upwardly moving fluid.
In two dimensions, the stream function-vorticity formu-

lation has been used in numerous numerical studies (for

example, see ref. 8). Since detailed measurements of the

flow field involving heat transfer are rare, the results of

the present incompressible Navier-Stokes computation

are compared to those of stream function-vorticity

approach by Sa (ref. 8). In the figure, INS and SV

represent the results obtained using incompressible

Navier-Stokes and stream function-vorticity formula-

tions, respectively. Since the stream function-vorticity

formulation satisfies the divergence free velocity

condition, this comparison can also be used to show that

the present pseudocompressible formulation results in

incompressible solutions.

In figures 2 and 3, computed results for forced, mixed,

and natural convection cases are presented. The incom-

pressible Navier-Stokes results are shown on the left half

of each figure and results of the stream function-vorticity
are shown on the right half (see fig. 2). The forced con-

vection case was computed at Reynolds numbers ranging

from 5 to 40. However, in the present paper, only the

results for Re = 20 are reported. The mixed convection

for the heated or cooled cylinder was computed at the

Richardson number, which is defined in equation (13),
from -1 to 4 with Re = 20. When the Richardson number

is negative, the cylinder is cooled, and the fluid in the

boundary layer and in the wake region is decelerated by

the cooling. As the Richardson number increases, the

flow is accelerated and the separation of the boundary

layer is suppressed. The streamlines in figure 2(b)

indicate that there is no separation at Ri = 4. The natural

convection case was computed at the Rayleigh number up
to 105 . The dimensionless heat transfer coefficient, the

Nusselt number, is compared with experiments and other

computations as shown in figure 3 for the forced, mixed,

and natural convection cases. As the Reynolds number

increases or the cylinder is heated, the stronger velocity
near a surface makes the Nusselt number increase.

Overall, the present results agree well with numerical

and experimental data reported in references 9-14.

Thermally Driven Bifurcation in a Rectangular Cavity

Thermal instability is investigated next for a rectangular

cavity with an aspect ratio of 1 or 2, which has a hot

bottom wall and a cold top wall. For an aspect ratio of 1.0

at Ra = 105, there exists a unique solution with a single

vortex as shown in figure 4(a). The INS (left) and the SV

(right) show excellent agreement. On the other hand, the
cavity with an aspect ratio of 2.0 at Ra = 105 may have

two types of solutions: a double vortex as shown in

figure 4(b) or a single vortex in the middle of the cavity

as shown in figure 4(c). The bifurcation depends on the

external disturbances and the initial and boundary

conditions. In figure 4(b), the result of the INS (left) is a

little different from that of the SV (right), since the grid is

too coarse near the center line (the same grid number of

21 × 21 was used for both aspect ratios). However, in

general it is shown that the present method is adequate to

simulate the thermal instability.

Three-Dimensional Cavity

Most three-dimensional experiments are focused on the

investigation of heat transfer coefficients at surfaces for

practical applications. However, Morrison and Tran

(ref. 14) experimentally investigated the flow structure
in a natural convection mode generated by heated walls



inaverticalrectangularcavityshowninfigure5.The
temperaturedifferencebetweentheheattransferplates
wasfixedat10°Candtheplateseparationdistanceat
L=40mm(Ra= 5× 105).Thecavityaspectratiowas5
inboththehorizontalandverticalplanes(H/LandB/L).
MorrisonandTranmeasuredthevelocitycomponentsby
usingLaser-Doppleranemometry.Thenondimensional
z-componentvelocityiscomparedbetweenthepresent
resultsandMorrisonandTran'sexperimentaldatain
figures6and7.Goodagreementisobserved,indicating
thattheBoussinesqapproximationisadequateforthis
typeofflow.

Concluding Remarks

In the present study, it is shown that the Boussinesq

approximation is valid for the analysis of heat transfer
in an incompressible medium with mild temperature

variations where radiation or boiling heat transfer can be

neglected. The resulting formulation is validated using a
version of the INS3D code. Computed results show that

forced, mixed, and natural convection problems can be

accurately predicted using the Boussinesq approximation,
even at Ra = 5 × 105 in the case of Morrison's experiment

(ref. 15). This indicates that the interaction between

pseudocompressibility and buoyancy force is properly

accounted for by the present method. Overall, the cost of

computing attributed to the temperature equation has been

increased less than 5 percent.
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Figure 1. Vertical channel with temperature gradient: o, computed result; --, analytic solution.
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